Guest post: 10 lessons from data journalism training

Following my post on data journalism teaching fellow trainer Peter Verweij got in touch to share a post which first appeared on his blog earlier this month. I’m reproducing it here with permission. A Dutch version is also available here.

In the 1990s it was called Computer Assisted Research and Reporting; now it is called data Journalism. Since I retired early from the School of Journalism at Utrecht about three years ago, I decided to focus on training working journalists in data journalism. The Netherlands is a bit small for these activities and most of my work is in Europe, the borders of Europe and Sub-Sahara Africa. Training takes a couple of days from a 3 days minimum to 5 days maximum.

Looking back over the past year I come to the following conclusions:

1. The interest in training is substantial

In 2014 I visited 10 countries, had 60 training days and trained about 150 journalists.

On average this is about one training per month, but one has to bear in mind that traveling takes a lot of time, each course needs preparation and at the end I have to write a trainer’s report. For each training I create a folder in the cloud with examples and assignments related to the country I am working.

One cannot do a training in Dar es Salaam using examples of Dutch hospitals. You must have local data and maps.

2. Participants of the course are always working journalists

They come from print, hard copy and online, but TV as well. They know how to tell a news story. And that is exactly what they want to leave behind.

They want to go deeper than text and a photograph, more research and more backgrounding. Data journalism is an eye opener, providing a new perspective on the profession. News stories are not re written press releases, but stories based on data, not re-active reporting but pro-active reporting.

3. Data journalism without spreadsheets is impossible

What Word is to text, Excel is to numbers. And that is often the first challenge, simply because you choose journalism as a profession because you like writing and not doing calculations. And now the numbers are back.

Of course it is not rocket science, but it is about simple things like percentages and averages, or making a top ten, ordering from high to low.

However, moving to statistics, calculating a relationship between variables in a cross table, becomes sometimes too difficult. Generally I leave this topic to a more advanced training session.

Scraping data with for example Outwit-Hub is like fishing the meat balls from html-soup. Scraping a table from a web page is for most participants not too difficult. Scraping a large number of web pages using a script or a scraper is only workable for those who have some affinity with spreadsheets and have some knowledge about html.

4. Finding data is a problem – especially outside Europe

In the Netherlands it is relatively simple to find data about mayors and municipalities, quality of hospitals, or crime in cities. Moving outside the Netherlands creates trouble.

This is sometimes small: in Belgium for example names of municipalities are in Dutch and French, a difference in spelling which can become a hindrance for mapping.

On the other hand in Tbilisi Georgia there is no database with crime records or violence against women. If you want to produce a homicide map you have to collect the data yourself.

Sometimes the data are available, but they are in PDF format. A crime reporter from Cape Town for example gets every year the crime figures from the police stations. More than a 100 pages in pdf. Impossible to write to write the story unless you put the numbers in a spreadsheet.

Sometimes numbers are politically sensitive. When an analysis on local level shows that the winning candidate (with more than 75% of the votes) is not popular everywhere, a training could be canceled.

Sometimes there are no data at all or they are completely incredible. Analysis of traffic accidents becomes impossible when the police are using traffic fines to generate an extra income.

In that case you have to go back to international data about a country, using data from the World Bank, IMF, WHO or data from ratings agencies like S&P.

However, a solution could be simple. Grahamstown, South Africa has lots of trouble with the supply of water to the town. A small group of participants in a training decided to collect their own data. They visited 10-15 restaurants in the city and recorded how many days there was no water, and of course what the economic consequences were. A beautiful pin point map with data was the outcome.

5. Visualizations are important

We don’t print tables in a newspaper. Visualizations in Excel or Google Excel are interesting, However Datawrapper or Tableau are easier and simpler.

Visualizations are not only for online, but also for the hard copy edition. So you must be able to export the visualization to a format (and resolution), which can be used in print.

Producing visualizations in Tableau and Datawrapper makes your data public, because you have to upload the data to the server. That is not always your preference. Only Datawrapper has the possibility to install the program on your own server.

6. Making maps is an issue of its own

Using Google Fusion Tables it is possible to produce two different type of maps: pinpoint maps and polygon maps.

Making a map for the spread of HIV-Aids over districts in Tanzania is relatively simple. If you have the data and the map. But where is a map of districts in Tanzania in Fusion Tables format?

And secondly how can you produce a map for online and print which is exactly the same?

The solution is to work with an open source mapping program like QGIS. Connect your data and map in QGIS, produce a map and export this map in a print format; next export the map in Google format and publish that map in Google FT.

For most participants this is too much: again a new program with a mysterious interface. The best solution is to make a division of labour, and teach only this mapping program to specialists, who are working closely together with designers and infographic editors.

7. The result must be the story

It is journalism, not computer technology. The question is how to personalise your data; finding people who illustrate your analysis?

I noted that only a minority of the participants are blogging. They know how to do a story, but do not have much experience writing for the web. This also makes it difficult to explain the use of ’embedded links’, to add maps for example to a story.

8. Training must be more than a collection of tricks.

I use the concept of the ‘story idea’ to bring in more journalism in the training. At the start of the training every participant should bring an idea for a data journalism story.

During the training they get time to work on their topic: collecting, analyzing, visualizing and writing the story. At the end they present their findings to the whole group.

9. How can we implement data journalism in day to day production?

At the end of training comes the question “how are we going to do this in the newsroom?” I pay attention to various models for introducing data journalism; ranging from data journalism projects to ToT(training of trainers) to spread the message.

However on top of my list is always: continue practising, otherwise your skills will be lost within a month after the training.

10. Funding 

Data journalism training is coming from two sources: NGO’s or media companies.

When funding is coming from NGO’s you generally have a group of journalists coming from a wide range of media. There is not much to say about implementation or follow-up. Generally the outcome of their story ideas work as showcase; showing how data journalism could be done.

When working with media companies directly, the situation is different. The involvement of management and editor is larger; the journalists in the training know each other. The production during the training will be published, and immediately after the training projects will be started based on time and money.

If the projects get stuck, or they need more skills, I am again invited to do some (re) training or consultancy.

In the end it is a two-tier process. When a journalist takes part in an NGO training and they are really interested in data journalism an invitation for an in-company training will follow.

Peter Verweij was senior lecturer at the School of Journalism at Utrecht, The Netherlands, in online journalism. He now works as a consultant and training for data journalism at his company D3-Media.


1 thought on “Guest post: 10 lessons from data journalism training

  1. Pingback: 我在培训 “数据新闻”中不得不说的5个问题 - dyclub

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.