Tag Archives: deep learning

Investigative journalism’s AI challenges: accuracy and bias, explainability and resources

screenshots of guidelines on AI

Having outlined the range of ways in which artificial intelligence has been applied to journalistic investigations in a previous post, some clear challenges emerge. In this second part of a forthcoming book chapter, I look at those challenges and other themes: from accuracy and bias to resources and explainability.

Continue reading

AI in investigative journalism: mapping the field

screenshots of various examples of AI being used in journalism, including Serenata de Amor, Leprosy of the Land and The Implant Files

Investigative journalists have been among the earliest adopters of artificial intelligence in the newsroom, and pioneered some of its most compelling — and award-winning — applications. In this first part of a draft book chapter, I look at the different branches of AI and how they’ve been used in a range of investigations.

Continue reading

Here are some great examples of how to use AI and satellite imagery in journalism

False colour image of the Paraná River near its mouth at the Rio de La Plata, Argentina
False colour image of the Paraná River near its mouth at the Rio de La Plata, Argentina. Image: Copernicus Sentinel data [2022] processed by Sentinel Hub.

In a guest post for OJB, first published on ML Satellites, MA Data Journalism student Federico Acosta Rainis explains what can be learned from some examples of the format.

Satellite imagery is increasingly a key asset for journalists. Looking from above often allows us to put a story into context, take a more interesting perspective or show what some power prefers to keep hidden.

But with hundreds of satellites taking thousands of images of the Earth every day, it is difficult to separate the wheat from the chaff. How can we find relevant stories in this ocean of data?

Continue reading