Category Archives: data journalism

Tre flere vinkler som oftest brukes til å fortelle datahistorier: utforskere, sammenhenger og metadatahistorier

I et tidligere innlegg skrev jeg om fire av vinklene som oftest brukes til å fortelle historier om data. I denne andre delen ser jeg på de tre øvrige vinklene: historier som fokuserer på sammenhenger; ‘metadata’-vinkler som fokuserer på dataenes fravær, dårlige kvalitet eller innsamling — og utforskende artikler som blander flere vinkler eller gir en mulighet til å bli kjent med selve dataene.

7 vanlige vinkler for datahistorier

Omfang: 'Så stort er problemet'
Endring/stillstand: ‘Dette øker/synker/blir ikke bedre’
Rangering: ‘De beste/verste/hvor vi rangerer’
Variasjon: "Geografisk lotteri" 
Utforske: Reportasjer, interaktivitet og kunst
Relasjoner/avmystifisering: ‘Ting er forbundet’ — eller ikke; nettverk og strømmer av makt og penger
Metadata: ‘Bekymringer rundt data’; ‘Manglende data’, ‘Få tak i dataene’
Continue reading

Die umgekehrte Pyramide des Datenjournalismus: Vom Datensatz zur Story

Die umgekehrte Pyramide des Datenjournalismus
Ideen entwickeln
Daten sammeln
Reinigen
Kontextualisieren
Kombinieren
Fragen
Kommunizieren

Datenjournalistische Projekte lassen sich in einzelne Schritte aufteilen – jeder einzelne Schritt bringt eigene Herausforderungen. Um dir zu helfen, habe ich die “Umgekehrte Pyramide des Datenjournalismusentwickelt. Sie zeigt, wie du aus einer Idee eine fokussierte Datengeschichte machst. Ich erkläre dir Schritt für Schritt, worauf du achten solltest, und gebe dir Tipps, wie du typische Stolpersteine vermeiden kannst.

(Auch auf Englisch, Spanisch, Finnisch, Russisch and Ukrainisch verfügbar.)

Continue reading

9 takeaways from the Data Journalism UK conference

Attendees in a lecture theatre with 'data and investigative journalism conference 2025 BBC Shared Data Unit' on the screen.

Last month the BBC’s Shared Data Unit held its annual Data and Investigative Journalism UK conference at the home of my MA in Data Journalism, Birmingham City University. Here are some of the highlights…

Continue reading

How do I get data if my country doesn’t publish any?

Spotlight photo by Paul Green on Unsplash

In many countries public data is limited, and access to data is either restricted, or information provided by the authorities is not credible. So how do you obtain data for a story? Here are some techniques used by reporters around the world.

Continue reading

De vanligste vinklene journalister bruker når de forteller historier med data

 7 vanlige vinkler for datahistorier_
Omfang, Veksling, Rangering, Variasjon, Utforske, Relasjoner, Dårlig/åpne, + saker

Datadrevet historiefortelling kan deles i syv hovedkategorier ifølge en analyse av 200 artikler. I den første av to poster vil jeg demonstrere de fire mest brukte vinklene i nyhetshistorier, hvordan de kan gi deg flere muligheter som reporter, og hvordan de kan hjelpe deg med å arbeide mer effektivt med data.

De fleste datasett kan fortelle mange historier — så mange at det for noen kan virke overveldende eller forstyrrende. Å identifisere hvilke historier som er mulige, og å velge den beste historien innenfor den tiden og de ferdighetene du har tilgjengelig, er en viktig redaksjonell ferdighet.

Mange nybegynnere innen datajournalistikk søker ofte først etter historier om sammenhenger (årsak og virkning) — men disse historiene er vanskelig og tidkrevende. Du kan ønske å fortelle en historie om ting som blir verre eller bedre — men mangle dataene for å fortelle den. Hvis du har svært liten tid og vil komme i gang med datajournalistikk, er de raskeste og enkleste historiene du kan fortelle med data, historier om omfang.

Continue reading

Niamh McIntyre: tips from a career in data journalism

Niamh McIntyre

The Bureau of Investigative Journalism’s Big Tech Reporter Niamh McIntyre has been working with data for eight years — but it all stemmed from an “arbitrary choice” at university. She spoke to MA Data Journalism student Leyla Reynolds about how she got started in the field, why you don’t need to be a maths whizz to excel, and navigating the choppy waters of the newsroom. 

Starting out on any new path can be daunting, but in the minutes before my phone call with Niamh McIntyre, I’m acutely aware that upping sticks to Birmingham and training in data journalism at the grand old age of 29 is nothing less than a tremendous luxury.

A younger me might have — would have — quaked at such a scenario, so I’m keen to know more about Niamh’s work, which ranges from investigating the gig work industry to private children’s homes.

Continue reading

VIDEO: Developing ideas for factual storytelling

Strong factual storytelling relies on good idea development. In this video, part of a series of video posts made for students on the MA in Data Journalism at Birmingham City University, I explain how to generate good ideas by avoiding common mistakes, applying professional techniques and considering your audience.

The links mentioned in the video include:

Related post: Here’s how we teach creativity in journalism (and why it’s the 5th habit of successful journalists)

Identifying bias in your writing — with generative AI

Applications of genAI in the journalism process 
Pyramid with the third 'Production' tier highlighted: 

Identify jargon and bias; improve spelling, grammar, structure and brevity

In the latest in a series of posts on using generative AI, I look at how tools such as ChatGPT and Claude.ai can help help identify potential bias and check story drafts against relevant guidelines.

We are all biased — it’s human nature. It’s the reason stories are edited; it’s the reason that guidelines require journalists to stick to the facts, to be objective, and to seek a right of reply. But as the Columbia Journalism Review noted two decades ago: “Ask ten journalists what objectivity means and you’ll get ten different answers.”

Generative AI is notoriously biased itself — but it has also been trained on more material on bias than any human likely has. So, unlike a biased human, when you explicitly ask it to identify bias in your own reporting, it can perform surprisingly well.

It can also be very effective in helping us consider how relevant guidelines might be applied to our reporting — a checkpoint in our reporting that should be just as baked-in as the right of reply.

In this post I’ll go through some template prompts and tips on each. First, a recap of the rules of thumb I introduced in the previous post.

Continue reading

Using generative AI as a scraping assistant

Applications of genAI in the journalism process 
Research
Pyramid with the second 'research' level highlighted: Scope diverse sources, explore documents, form advanced searches, and write/fix code for scraping and analysis
Scraping is part of the research phase of a project

In the fourth of a series of posts from a workshop at the Centre for Investigative Journalism Summer School (the first part covered idea generation; the second research; the third spreadsheets), I look at using generative AI tools such as ChatGPT and Google Gemini to help with scraping.

One of the most common reasons a journalist might need to learn to code is scraping: compiling information from across multiple webpages, or from one page across a period of time.

But scraping is tricky: it requires time learning some coding basics, and then further time learning how to tackle the particular problems that a specific scraping task involves. If the scraping challenge is anything but simple, you will need help to overcome trickier obstacles.

Large language models (LLMs) like ChatGPT are especially good at providing this help because writing code is a language challenge, and material about coding makes up a significant amount of the material that these models have been trained on.

This can make a big difference in learning to code: in the first year that I incorporated ChatGPT into my data journalism Masters at Birmingham City University I noticed that students were able to write more advanced scrapers earlier than previously — and also that students were less likely to abandon their attempts at coding.

You can also start scraping pretty quickly with the right prompts (Google Colab allows you to run Python code within Google Drive). Here are some tips on how to do so…

Continue reading